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Despite considerable practical success in dealing witlylinen plasma, finite-temperature perturbation the-
ory suffers at the fundamental level from infrared divelggndiscovered by Linde. However if gauge or Gribov
copies are properly eliminated from the physical state espmérared modes are strongly suppressed. We de-
scribe the gluon plasma in zeroth order as a gas of free gaaséles with a temperature-independent dispersion

relation of Gribov typeE (k) = {/k2+ '}f—; that results from the reduction of the physical state spé@be ef-

fective masi’,'(—2 controls infrared divergences and allows finite calculaloeections. The equation of state of
this gas is calculated and compared with numerical lattita.d

I. INTRODUCTION of the physical state space, and he obtained instead
4
, ) E(k)=1/k2+ M—Z, (1.1)
The equation of state (EOS) of the quark-gluon plasma is k

of vital interest at present because of the exciting RHIC eXWherek _ |k, andM is a QCD mass scale. The reduction

periments at Brookhaven National Laboratory [1]. Here we ) -

shall be concerned with the pure gluon plasma, leaving guar fth_e physical state space was originally _proposed as an es-
for another occasion. The EOS of the gluon plasma is rathe?‘en.t"'j‘.I feature of the qonflpemgnt mechanism [7, 8].' However
precisely known from numerical studies in lattice gauge theStat'St'Cal mechanlcs IS p”maf"y a matter of countindesia

ory [2], and there exist excellent phenomenological fits toand the r_edt_Jctlo_n of the physical state space required by the
the EOS of the gluon plasma in the deconfined phase [3 jauge principle mfluence§ the EOS at all temperatures. Here
In contrast with this practical success, it was discovengd b € s.hall be concerned W'th its eﬁegt in the deconﬁqed phase.

: _ It is known from numerical studies [2] that at high tem-

Linde [4] as far back as 1980 that finite-temperature pertur
bative QCD suffers at a fundamental level from infrared dj-Perature the EOS of the gluon plasma approaches the Stefan-
Boltzmann lawg = 3p = 3csgT 4, wheres is the energy per

vergences, which suggests that finite-temperature perturb =" - .

tion theory neglects an essential feature of QCD. It has beelt V(:rlzume, P 'S_ the pressure[ is the tempgrature, and
proposed [5] to control these divergences by introducing &s& = 45(N>— 1) in SU(N) gauge theory. Thus it seems rea-
magnetic massn ~ g2T. It has also been proposed [6] that Sonable to describe the gluon plasma at high temperature in
the divergences stem from an inadequate application of thSt approximation as a gas of non-interacting quasi-plai
principle of gauge equivalence. Indeed in 1978, two yeardVe shall describe the quasi-particles by the Gribov disper-
before Linde’s discovery of the infrared divergence [4]j-Gr Sion relation (1.1) or a similar one, fé(k) is only approx-

bov showed that infrared modes are strongly suppressed whéRately known. Fortunately the results obtained hold under

gauge equivalence is imposed at the non-perturbativegyel rather general conditions da(k). We call the gas of non-
interacting quasi-particles, with modified dispersioratieln,

According to the principle of gauge equivalence, two differ the FMR gas. )
ent configurations that are related by a gauge transformatio "€ FMR gas closely resembles early phenomenologi-
A, = 97, represent the same physical state. The gauge tran§&/ models of the gluon plasma [9], characterized by a
formation, 94 = g~ 'Aig+ g~1d;g, is highly non-linear, and temperature—lgldependent infrared cut-Kiff because the ef-
the physical state space (which is the quotient of the spacictive mass-, which is large at lovk, provides an infrared
of connections modulo gauge transformations) is not a fineacut-off atk ~ M. Those models, which were developed ap-
space. This geometric property of gauge theory shows up iproximately a decade after Gribov’s paper, were inspired by
practice when one fixes a gauge, which is simply a coordithe idea that low-momentum gluons are confined but high-
natization of the physical state space. Two or more difierenmomentum gluons are effectively free, and they succegsfull
configurations may be gauge equivalent even though both sagapture the gross features of the EOS of the gluon plasma.
isfy the linear Coulomb gauge COﬂditiOZIi?’tlaiAa —=0. When Phenomenological models were subsequently improved [3],
enumerating physical states, only one of these “Gribov” oy making the cut-offK(T) temperature dependent and in
gauge copies should be counted, so the space of physies stabther ways, to give a good fit in the transition region, at the
is reducedo the fundamental modular region (FMR), a region cost of additional parameters. The FMR gas is not intended to
that is free of Gribov copies. Gribov [7] found that the dispe compete in precision with these improved phenomenological

sion relationE (k) = k gets modified because of the reduction models. Rather it is conceived as the zeroth order approxi-
mation that allowsalculablecorrections by an iterative pro-

cedure, for example of Dyson-Schwinger type (presently be-
ing developed). Successive iterations yield perturbdimpe
*Electronic addressiani el . zwanzi ger @yu. edu corrections to the FMR gas that are expected to give good
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results at highlT. They are similar to thermal perturbation integration by parts, one has

theory [10, 11], but the infrared divergences of thermat per )

turbation theory [4], that may be controlled by introducing 0= (N°-1) /wdk k® 0E (k) 2.4)
magnetic rr;asmw g’T [5], are here controlled by the effec- 3 Jo exgBE(K)]—1 ok ’ '

M

tive mass¥-. It has been noted by Rischke et al [9] that in- £, the Jast two equations, we obtain for the trace anomaly
frared divergences are also controlled when the cut-offehod 0=¢-3p=(G2)o— (Gt

is iterated, and that non-analytic corrections of orgeare a
absent. (N2—1) [® K4 d /—E(K)
Many aspects of the Gribov scenario have been verified in &= T/o dk expBE(K)] — 1 ﬁ(( K )7 (2.5)
recentinvestigations. Infrared suppression of the gluopa-
gator in Coulomb gauge has been observed in numerical sinwhere G2 = (293)*1(—[3)Gf}\,G“"a is the gluon conden-
ulation [12], but less strongly in [13], and in Landau gauge . . . E(K .
in 3-dimensions [14]. It has also been found in variationalSate [19]. The integrandiis positive Wh§{(¥ <0, which
calculations in Coulomb gauge [15], and in Schwinger-Dysoris a sufficient condition foe(T) > 3p(T). We also have
calculations in Coulomb [16] and in Landau [17] gauge. A€ = TZ%(T”), from which it follows that the trace anomaly
long-range color-Coulomb potential was found in numericalmay be writterf = ¢ — 3p= TS%(T%)' Upon integration this
simulations in Coulomb gauge in the deconfined phase [18]. yields
The questions we wish to address here are: (i) What is the -
equation of state of the FMR gas? (ii) How does it compare p= CSBT4_T4/ dT 75 9(T). (2.6)
with the EOS that is known from numerical studies? JT

I11. FMR GASAT HIGH TEMPERATURE
II. EOSOF THE FMR GAS

o Suppose that the leading deviations(k) from k at highk
In the Stefan-Boltzmann limit, the degrees of freedom forig expressed by a power law,

each gluon momenturk are the two states of polarization,

each with color multiplicity(N? — 1). These are precisely the E(k)/k=14c/K'+... . (3.1)
degrees of freedom in Coulomb gauge, and we shall use this

gauge for our calculation. It is a “physical” gauge without For the Gribov dispersion relatida(k) = /k? +M*/k? one
negative metric states, and all constraints are satisfieutiid  hasy = 4, whereas for a gluon mass(k) = vk +nm¥é, one
cally. Although the Coulomb gauge is not manifestly Lorentzhasy = 2. The gluon condensate has dimension 4, which leads
covariant, this is not necessarily a disadvantage in the desne to expecy = 4, whereas if there were a condensate of di-
confined phase because at finitethe heat bath provides a mension 2, one would expegt= 2. The asymptotic behavior
preferred Lorentz frame, and the manifest symmetries of thef the EOS is qualitatively different forgreater or less than 3.
Coulomb gauge are the symmetries of the physical problem at/e supposg > 3, and consequently the deviation from the ul-

hand. traviolet behavioE (k) = k is soft.
The partition function of the FMR gas is given by the Fory> 3, the asymptotic high- limit of the trace anomaly
Planck distribution, is obtained from the substitution effg¥] — 1 — E in (2.5).
This substitution cannot be made in the integralsgande
Z=[][1-exp(—BEn) ], (2.1)  because they would diverge. It gives a linear asymptotimstra
n anomaly,
where3 = 1/T is the inverse temperature, and= (k,A,a), 0=LT+0(1), (3.2)

wherek is 3-momentumA = 1,2 is polarization, and =
1,...(N>—1) is color. With 3y, — (N>—1)Vrr2[dkié,  where
whereV is the 3-volume, this gives

2 1) o K 9 —E(k
L= (anl)/o dkE(k)ik( Ek())

__(N2_ -2 [ kiR v o
InZ = —(N2— 1)Vt /0 dki@ In{ 1— exg—BE(K)] }, . 3(N2_1)n72/0 R MERK, (39

(2.2)
; iy 10InZ
and, with energy density = —g “op Ve have is an integral that converges fpr> 3 (as we have supposed),
) " ) and is positive folE(k) > k. These are sufficient conditions
e (N°— 1)/ dk k E(K). (2.3)  for the linear asymptotic form (3.2) with > 0. AlthoughL
™ Jo  expPE(K)] -1 describes the highi- limit of the FMR gas, the last integral

o involves all moment&. For the special case of the Gribov
For a homogeneous system, the pressure is givem BY  gispersion relation (1.1), one obtains
T""NLZ = \I/InZ = —f, and the entropy density Bys= €+ p,
wheref = F/V is the free energy per unit volume. After an L=(N>-1) (v2) 1 M3, (3.4)



which is proportional tavi® although onlyM# appears in the
dispersion relation.
The pressure at high is obtained from (2.6) which yields

p=csg T*—(1/3)L T+0O(1), (3.5)

Thus for the FMR gas, the leading deviation of the pressure

from the Stefan-Boltzmann law is linear Th However this 3 fz, p
linear term — and only a linear term — is annihilated in the ,:',‘/.,.-" - = 3/4 /T
formula for the energy density= T2 2-(2), which gives 2r g F — 3p/T T
oS
L o7 4
£ =3csg T*+0(1). (3.6) 64 }
. . . . S ;{‘y. Il Il 1
An EOS of this type was obtained as a fit to the lattice data at 1 2 3 yr, 4 5

high temperature in [20]. For the speed of sound one obtains g, 2: Numerical and analytic plots ef T4, 3/4 s/T3, 3p/T*.
op 1 L 1
d=2=3(1-)+o(x2) @D | )
SB The numerical data of [2] foe; are represented by the
black interpolating curves in Fig. 1. (More recent studies i

IV. COMPARISON WITH NUMERICAL EOS clude dynamical fermions or a chemical potential that canno
be described by the FMR gas.) The data fgr= 6 and 8
agree, and were interpreted as continuum values [2]. The red
dots are obtained from the analytic formula (2.5), with mass
scale set aM = 2.6T; by fitting at highT, whereT; is the
transition temperature. The relatively large differencehie
Yransition region between the FMR gas and the numerical data
for 8 = € — 3p occurs because the FMR gas does not exhibit
sharp phase transition, whereas for pure SU(3) gaugeytheor
ere is a first order phase changeg$®discontinuous while

p is continuous. We do not attempt to estimate the error of

The EOS of the FMR gas at high is not sensitive to the
exact form ofE(k) because (3.5) and (3.6) hold as long as
y > 3 andE(k) > k. To compare with the numerical data, we
take the Gribov dispersion relation (1.1). The unknown mas
scaleM is determined by fitting the anoma8/= € — 3p at
high T, because the corrections to this quantity are expecte
to be small. [Indeed, taking thermal perturbation theory asgy,
a guide [10], we note that the leading correctionptds of

4 . .
orderAp ~ g%(T)T* ~ 7. The anomaly is given b = M pecause perturbative-type corrections to the FMR gas have
TS%(T—E), so the corresponding correction to the anomalybeen neglected. From the vallie= 0.625,/0 of [2], wherea

AO=T52 (8P) is of orderT5-2 (L) = _ T L ATTA is the string tension, one gew = 1.6./a, or M = 705 MeV,
ar (77) ar (A7) = —jer ~ 9 (DT where the string tension for the quarkless theory is defined t
be\/o = 440 MeV.

The numerical data of [2] forr%, AiT% and%} are are dis-
played as black interpolating curves in Fig. 2, whele=

s?—f. The horizontal line represents the Stefan-Boltzmann

EOS. For the FMR gas,%‘} and T—ﬂ approach the Stefan-
Boltzmann limit like & and 2 respectively, being quite
close to it at the highest temperature display@d= 5T,
whereas the gluon plasma approaches the Stefan-Boltzmann
limit more slowly. The difference between the FMR gas and
the gluon plasma in the rang@z2o 5T; appears attributable

to perturbative-type corrections of moderate size. Inczah
thermal perturbation theory [10] these are of leading order
g’(T) ~ % but diverge at ordeg®, whereas corrections to
the FMR gas are expected to be calculable.

V. DISCUSSION

Above the transition region, the EOS of the FMR gas gives
a good description of the most prominent feature of the gluon
plasma which is the rapid drop of the pressure compared to the
energy from the Stefan-Boltzmann valueTadecreases from
infinity. The linear asymptotic trace anomaly (3.2) prowde

FIG. 1: Numerical and analytic plot ¢&€ —3p)/T*.
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a ready explanation for this, that holds for any quasi-pketi are T-dependent. When used in Planck’s formula, the
model withy > 3 and & %k) < 0, although other fits are dependent dispersion relation requires the introductfcamo

certainly not excluded. The FMR gas is not exact even at higﬁlddltlo.na! bac_k_ground ﬂel.dB.(T) to assure that the thermo-
dynamic identities are satisfied. The improved phenomeno-

bect however that they are caloulable and of moderate siZggical Models of [3] are more precise than the FIR gas es-
P y Secially in the transition region, but they also requirecsaV/

above the transition region. :

The transition region is not so well described by the FMRpaLameters.tr\]NeFr;/Tl\ée fit olnly tf;g ?Clj rga:ssbsMa.le : h
gas. There is no sharp phase transition becg($¢ is an owe\I/er_ (T q ?13 Its ntc;] mten € .; €a p][elczlste? e
analytic function. Moreover the dependence on N [of SU(N)]”O.’“G”O ogical model, but rather to provide a usetul stgrtin

point, well founded in the principles of gauge theory, that a

s only through the coefficier(N® — 1), whereas even the or- lows calculable, moderate size corrections at Aigithough
der of the phase change dependdoibeing second order for it is defined by Gribov’s dispersion relation of 1978, the FMR

Z;J c()ﬁ) ggg eférs;r(]) rédeenrt:r SSyLrJrE?et'?; iasngil\)//;s ionf Egifh:isvg\?grgqs has tvvg i_mportant properties that were !ater indepeahyden
_ _ . + - reinvented: (i) Its EOS closely resembles simple phenomeno

the dispersion relatio& (k) = |/k?+ 1 has a minimum en- |ogical models of the gluon plasma [9]. (ii) The effective
ergyEmin = v2M, so the thermodynamic functioasp ands mass'\"T2 controls infrared divergences in higher order correc-
of the FMR gas are exponentially small for< /2M =997  tions so it is not necessary to introduce the magnetic mass
MeV (for M = 705 MeV). The mass of the lightest glueball is m~ g?T [5] for this purpose.
of order 1 GeV, so the thermodynamic functions of the FMR
gas are exponentially small where they are supposed to be.
Altogether the FMR gas, with a single parametewhich is
the mass scale, is competitive with cut-off phenomenokilgic
models [9]. Acknowledgments
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